Poly-omic prediction of complex traits: OmicKriging.
نویسندگان
چکیده
High-confidence prediction of complex traits such as disease risk or drug response is an ultimate goal of personalized medicine. Although genome-wide association studies have discovered thousands of well-replicated polymorphisms associated with a broad spectrum of complex traits, the combined predictive power of these associations for any given trait is generally too low to be of clinical relevance. We propose a novel systems approach to complex trait prediction, which leverages and integrates similarity in genetic, transcriptomic, or other omics-level data. We translate the omic similarity into phenotypic similarity using a method called Kriging, commonly used in geostatistics and machine learning. Our method called OmicKriging emphasizes the use of a wide variety of systems-level data, such as those increasingly made available by comprehensive surveys of the genome, transcriptome, and epigenome, for complex trait prediction. Furthermore, our OmicKriging framework allows easy integration of prior information on the function of subsets of omics-level data from heterogeneous sources without the sometimes heavy computational burden of Bayesian approaches. Using seven disease datasets from the Wellcome Trust Case Control Consortium (WTCCC), we show that OmicKriging allows simple integration of sparse and highly polygenic components yielding comparable performance at a fraction of the computing time of a recently published Bayesian sparse linear mixed model method. Using a cellular growth phenotype, we show that integrating mRNA and microRNA expression data substantially increases performance over either dataset alone. Using clinical statin response, we show improved prediction over existing methods. We provide an R package to implement OmicKriging (http://www.scandb.org/newinterface/tools/OmicKriging.html).
منابع مشابه
Prediction of Plant Height in Arabidopsis thaliana Using DNA Methylation Data
Prediction of complex traits using molecular genetic information is an active area in quantitative genetics research. In the postgenomic era, many types of -omic (e.g., transcriptomic, epigenomic, methylomic, and proteomic) data are becoming increasingly available. Therefore, evaluating the utility of this massive amount of information in prediction of complex traits is of interest. DNA methyla...
متن کاملIntegration of Multi - Layer Omic Data for Prediction of Disease Risk in Humans
Accurate prediction of disease risk is needed for implementing personalized medicine. Despite important advances in the assessment of genetic risk, our ability to predict disease risk based on information from the genome (e.g., SNPs) remains very limited. Owing to developments in high-throughput technologies integrated omic profiles are becoming increasingly available. These data holds informat...
متن کاملRobust prediction-based analysis for genome-wide association and expression studies.
Here we describe a prediction-based framework to analyze omic data and generate models for both disease diagnosis and identification of cellular pathways which are significant in complex diseases. Our framework differs from previous analysis in its use of underlying biology (cellular pathways/gene-sets) to produce predictive feature-disease models. In our study of alcoholism, lung cancer, and s...
متن کاملGWAS in a Box: Statistical and Visual Analytics of Structured Associations via GenAMap
With the continuous improvement in genotyping and molecular phenotyping technology and the decreasing typing cost, it is expected that in a few years, more and more clinical studies of complex diseases will recruit thousands of individuals for pan-omic genetic association analyses. Hence, there is a great need for algorithms and software tools that could scale up to the whole omic level, integr...
متن کاملInsights into the Ecology and Evolution of Polyploid Plants through Network Analysis.
Polyploidy is a widespread phenomenon throughout eukaryotes, with important ecological and evolutionary consequences. Although genes operate as components of complex pathways and networks, polyploid changes in genes and gene expression have typically been evaluated as either individual genes or as a part of broad-scale analyses. Network analysis has been fruitful in associating genomic and othe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetic epidemiology
دوره 38 5 شماره
صفحات -
تاریخ انتشار 2014